
FEATURE ARTICLE

Quantum Dissipative Dynamics: A Numerically Exact Methodology

Nancy Makri
School of Chemical Sciences, UniVersity of Illinois, 601 S. Goodwin AVenue, Urbana, Illinois 61801

ReceiVed: December 1, 1997; In Final Form: February 26, 1998

A fully quantum mechanical methodology for simulating the time evolution of low-dimensional systems in
harmonic dissipative environments is presented. The key features of the method are the numerical construction
of accurate propagators based on physically motivated reference Hamiltonians and the decomposition of the
path integral into a series of shorter time operations, which leads to an iterative algorithm. Illustrative
applications to barrier-crossing events and biological electron transfer are presented.

I. Introduction

The introduction in the last two decades of advanced
spectroscopic techniques with subpicosecond temporal resolution
has had an unprecedented impact on the way chemists view
molecular processes. The emerging picture has been made more
clear with the aid of computer modeling. In particular, the use
of classical molecular dynamics simulations has offered detailed
pictures of molecular collisions and rearrangements, while the
advent of quantum time-evolution algorithms has contributed
significantly to the understanding of classically forbidden effects.
Unfortunately, rigorous quantum mechanical simulations are
presently limited to small molecules.
This article deals with the quantum dynamics of condensed-

phase phenomena. We focus on processes that occur in phonon
environments and are modulated by the interaction of the system
of interest with the collective vibrations of its surrounding host.
As an example, consider the dynamics (e.g., vibrational
relaxation or tunneling between two equivalent configurations)
of a molecular impurity in a crystalline solid. If the internal
degrees of freedom of the isolated impurity pertaining to the
process of interest can be described by a HamiltonianHs, the
total Hamiltonian can be written in the form

Heres denotes the coordinate(s) of the system of interest and
xj are harmonic “bath” degrees of freedom representing the
phonons of the environment. Interaction between system and
bath is described through the coupling functionsfj(s); the
coupling term is chosen linear in the phonon coordinates,
representing the lowest nontrivial term in the Taylor series
expansion of the potential. In many situations the coupling is
linearized with respect to the system coordinate as well, i.e.,
one takesfj(s) ) cjs, although this is not an essential requirement
to the methodology described below. It is assumed that the
properties of the system can be probed experimentally (e.g.,
via spectroscopic techniques), while the large number of phonon
vibrations are of interest only to the extent that they affect the
dynamics of the system.

Having stated the above preliminaries, the goal is to calculate
the time evolution of observables pertaining to the system in
the presence of coupling to the medium at a given temperature.
It is known that interaction with a macroscopic bath has
profound consequences on the properties of the observable
system. In general, these include irreversibility and at least some
degree of decoherence, such that the ensuing dynamics often
bears little resemblance to that of the isolated molecule. The
fact that molecular eigenstates are not eigenstates of the total
Hamiltonian leads to dephasing and population relaxation,
characterized by the flow of energy out of excited states of the
system until Boltzmann equilibrium is established. Tunneling
splittings are usually shifted to lower frequencies, and coherent
tunneling oscillations are under certain conditions replaced by
rate dynamics.

Clearly, direct solution of the Schro¨dinger equation with the
multidimensional Hamiltonian of eq 1.1 is computationally
prohibitive. An equally rigorous alternative is the use of
Feynman’s path integral formulation of time-dependent quantum
mechanics.1,2 In Feynman’s approach a transition amplitude
or propagator is expressed as a sum of amplitudes along all
paths that connect the initial and final points. Each of these
amplitudes is a complex number with phase equal to the classical
action along a path measured in units of Planck’s constant. In
the classical limit the phase is generally very large and the
amplitude a highly oscillatory functional of the path such that
the contributions from most paths sum to zero. Classical
trajectories, the phase of which is stationary, constitute an
exception; paths within a tube of width on the order ofp around
each classical trajectory add up constructively in this limit, and
one recovers the semiclassical result where the propagator is
expressed in terms of purely classical components.2

From a numerical standpoint, performing the sum over
Feynman paths represents a formidable task due to phase
cancellation. The conventional parametrization of paths is in
terms of straight line segments: one divides the total propagation
time intoN time slices of length∆t ) t/N and expresses the
propagator in terms of anN-1-dimensional integral involving

H ) Hs + ∑
j

(Pj22mj

+
1

2
mωj

2xj
2 - fj(s)xj) (1.1)
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shorter time propagators. The drawback of this approach is that
it requires a very fine discretization. At the same time, all short
time propagators enter with the same weight but rapidly varying
phases; as a consequence, Monte Carlo sampling generally fails
to yield converged results. A number of schemes have been
proposed in the last decade for dealing with the massive phase
cancellation problem that hinders evaluation of the real-time
path integral. These include analytic continuation3 or inver-
sion4,5 of imaginary-time quantities, stochastic sampling of the
complex time propagator about classical paths,6-12 stationary
phase filtering,13-20 construction of smooth propagators,21-23

and recursive schemes based on cumulant expansions of path
class averages.24 These methods have been partially successful,
but their applications are limited. To date, no stable simulation
methods are known that are capable of obtaining quantum
dynamical properties of arbitrary many-particle systems over
long times. However, recent progress has led to a stable fully
quantum mechanical algorithm for calculating the dynamics of
systems in contact with dissipative baths of the type described
by eq 1.1. This methodology is reviewed below and illustrated
with examples describing its use to explore the dynamics of
classically forbidden phenomena, such as tunneling and elec-
tronically nonadiabatic events.
Section II describes the path integral representation of the

reduced density matrix, introducing an improved propagator
based on a physically motivated zeroth Hamiltonian which is
chosen to reflect the specifics of the motion on the one-
dimensional adiabatic path. The same section discusses optimal
quadratures for the evaluation of the resulting path integral
expressions. Section III presents a decomposition of the path
integral which leads to an iterative algorithm. Tunneling of
impurities in solid hosts is discussed in section IV in the context
of reaction rate theory and the dissipative two-state model. That
section also describes the application of this methodology to
electron-transfer processes and illustrates it with the example
of primary charge separation in bacterial photosynthetic reaction
centers. Finally, a summary and a brief outlook appear in
section V.

II. The Path Integral: Adiabatic Reference and Discrete
Variable Representation

The evolution of observables pertaining to the system of
interest is most effectively expressed in terms of the reduced
density matrix,

Here the trace is evaluated with respect to all the bath degrees
of freedom{xi} andF(0) is the initial density operator. It is
often assumed that the system and bath are uncorrelated att )
0, such that the density operator factorizes:

Below we adopt this form for convenience, although the last
assumption is not essential to the methodology that follows.
The discretized path integral representation is obtained by

splitting the time intoN increments of length∆t ) t/N and
replacing the exponential of the sum by the product of
exponentials:

Repeated insertion of the resolution of identity in terms of
complete sets of system coordinate states leads to the following
path integral expression:

The last equation is exact for any value ofN. The sequences
s0

+, s1
+, ..., sN

+ ands0
-, s1

-, ..., sN
- (wheresN

+ ≡ s′′ andsN
- ≡ s′)

define discrete system paths in forward and backward time (see
Figure 1). Notice that each of the short time propagators in eq
2.4 is still an operator in the space of the bath degrees of
freedom.
To allow numerical evaluation, the propagators in eq 2.4 must

be available in some form. This requirement dictates an
approximate factorization of the short time evolution operator
into components whose propagators can be obtained either
analytically or numerically. Traditionally, this factorization
utilizes the kinetic energyKs of the quantum system (or of all
degrees of freedom) as the reference:

Because the kinetic energy operator does not commute with
the potential terms in the Hamiltonian, the last equation is valid
only in the limit of vanishing time step. As a consequence,
one must use a large number of time slices for a given total
time t, leading to a high-dimensional path integral expression.
Numerical evaluation of such integrals is problematic due to
the rapidly oscillatory nature of the short time propagators in
eq 2.5. Because eq 2.5 arises from artificial separation of the
system Hamiltonian into noncommuting kinetic and potential
energy parts, the problems associated with the multidimensional
character of the primitive path integral representation persist
even in the absence of system-bath coupling.
A superior path integral representation of the reduced density

matrix emerges if one employs a physically motivated reference.
Depending on the system, several choices are possible which
include judiciously constructed or even variationally optimized

F̃(s′′,s′;t) ≡ Trbath〈s′′|e-iHt/pF(0)eiHt/p|s′〉 (2.1)

F(0)) Fs(0) Fbath(0) (2.2)

F̃(s′′,s′;N∆t) )
Trbath〈s′′|e-iH∆t/pe-iH∆t/p...e-iH∆t/pF(0)eiH∆t/peiH∆t/p...eiH∆t/p|s′〉

(2.3)

Figure 1. Discretized system path in forward-backward time entering
the path integral representation of the reduced density matrix, eq 2.4.

F̃(s′′,s′;N∆t) ) Trbath∫ds0+∫ds1+...∫dsN-1
+ ∫ds0-∫ds1-...

∫dsN-1
- 〈s′′|e-iH∆t/p|sN-1

+ 〉〈sN-1
+ |e-iH∆t/p|sN-2

+ 〉...

〈s1
+|e-iH∆t/p|s0+〉〈s0

+|Fs(0)|s0-〉〈s0
-|eiH∆t/p|s1-〉 ×

〈s1
-|eiH∆t/p|s2-〉...〈sN-1

- |eiH∆t/p|s′〉 (2.4)

〈sk′′|e-iH∆t/p|sk′〉 ≈ 〈sk′′|e-i(H-Ks)∆t/2pe-iKs∆t/pe-i(H-Ks)∆t/2p|sk′〉
(2.5)

)x m
2πip∆t

eim(sk′′-sk′)
2/2p∆t ×

e-i[H(sk′′)-Ks]∆t/2pe-i[H(sk′)-Ks]∆t/2p
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reference potentials. A simple, yet computationally advanta-
geous reference is given by the Hamiltonian along the one-
dimensional adiabatic path:25

Unlike the primitive reference used in eq 2.5, the last equation
includes the kinetic energy of the quantum particleas well as
the full potentialthe latter experiences on the adiabatic pathxj
) fj(s)/mjωj

2. This line is defined by the points of lowest
potential energy at each fixed position of the system, as
illustrated in Figure 2. In the limit where the bath responds
infinitely faster than the system, the walls surrounding the
potential valley become infinitely steep and the dynamics is
governed by the motion on the adiabatic path.
The adiabatic reference introduced in eq 2.6 is both physically

appealing and sufficiently simple such that it can be dealt with
exactly. At the same time, the remaining Hamiltonian

consists of linearly displaced harmonic oscillators whose
quantum mechanics is readily available. By using a symmetric
splitting of the short time evolution operator and taking
advantage of the parametric dependence of the displaced bath
Hamiltonian on the system coordinate, one arrives at the
following product form of the system-bath propagator:

The only source of error in the last equation is the nonvanishing
commutator between the kinetic energy of the system and the
system-bath coupling functions present inH - H0. This error
can be brought in the form of the following nested commutator:

As seen from this expression, eq 2.8 is exact forany time step
not only for the uncoupled Hamiltonian but also with finite
system-bath coupling in the case of an infinite frequency
phonon spectrum. In the latter case the motion is confined to
the narrow valley surrounding the adiabatic path and nonadia-
batic corrections are negligible. In the realistic case of a bath
with high, though finite frequencies and/or weak to moderate
coupling strength, eq 2.8 provides an excellent approximation
even with sizable time steps.
Interestingly, the quasi-adiabatic partitioning of the propagator

according to eq 2.8 is accurate also in the opposite limit of a
sluggish bath. This is so because the period of the bath
oscillators is very large in this case, such that large but finite
time steps provide adequate discretization. In fact, the details
of partitioning the system-bath Hamiltonian are irrelevant in
the limit of a zero-frequency bath as long as the kinetic and
potential energy terms of each degree of freedom are not
separated.
Having identified a physically appealing reference which

leads to a superior partitioning of the propagator, one can
formally express the reduced density matrix as

Here

is an “influence functional” of system forward and backward
paths. Since the relevant Hamiltonian consists of linearly
displaced harmonic oscillators,F can be evaluated analytically.
For a Boltzmann ensemble described by the density operator

whereHbath is the Hamiltonian of the bare medium, and for
bilinear system-bath coupling of the type

use of the procedure described by Feynman and Vernon26 leads
to the result

Hereηkk′ are complex-valued coefficients that depend on the
collective characteristics of the medium via integrals involving
the bath spectral density

Figure 2. Typical potential energy surface described by eq 1.1 in the
case where the bath consists of a single-harmonic oscillator. The
adiabatic path is indicated via the purple line.

H0 ) Hs - ∑
j

fj(s)
2

2mjωj
2

(2.6)

H - H0 ) ∑
j

Pj
2

2mj

+
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2
mjωj

2(xj -
fj(s)

mjωj
2)2 (2.7)

〈sk′′|e-iH∆t/p|sk′〉 ≈
〈sk′′|e-iH0∆t/p|sk′〉e-i[H-H0(sk′′)]∆t/2pe-i[H-H0(sk′)∆t]/2p (2.8)

[ ps22m0
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,∑
j (xj -

fj(s)

mjωj
2)2]]∆t3 (2.9)

F̃(s′′,s′;N∆t) )∫ds0+∫ds1+...∫dsN-1
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〈s1
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-|eiH0∆t/p|s2-〉...〈sN-1
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Fbath(0))
exp(-âHbath)

Tr exp(-âHbath)
(2.12)

fj(s) ) cjs (2.13)
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1
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N
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and have been given explicitly in ref 27. For example, for 0<
k,k′ < N, one finds

where the spectral density at negative frequencies is defined as
an odd function. These results can be extended to Hamiltonians
with arbitrary coupling functionsfj(s) and to initial conditions
including system-bath correlation, although the resulting
expressions are slightly more complicated.
The spectral density function is the coupling-weighted density

of states of the phonon bath. If the environment consists of
only a few degrees of freedom, as in the case of a small organic
molecule,J(ω) is composed of delta function-like peaks. Broad
spectral densities are characteristic of macroscopic media (solids,
liquids, or large biological molecules) and are responsible for
loss. In order for system relaxation to occur via first-order
processes, this function must overlap with the characteristic
frequencies of the quantum system; otherwise transitions can
take place only via multiphonon effects and the ensuing decay
is slow.
The final component required in eq 2.8 is the short time

propagator for the reference Hamiltonian. For a general
nonlinear potential this propagator must be evaluated numeri-
cally. Use of the spectral expansion of the time evolution
operator leads to the identity

where Φn and En are, respectively, the eigenfunctions and
eigenvalues of the reference HamiltonianH0 and nmax f ∞.
The practical question that arises immediately is whether eq
2.17 can be evaluated using a finite number of eigenstates. Since
the terms in eq 2.17 oscillate in phase but do not decay in
magnitude with increasing quantum number, such truncation is
strictly incorrect if one is concerned with recovering the
reference propagator exactly. Notice, however, that the specifics
of the propagator need to be reproduced only to the extent that
they affect the reduced density matrix via eq 2.8. As the latter
involves integrals of short time propagators over one or both
endpoints, contributions from high-energy states become pro-
gressively smaller asΦn overlap less with the initial density
matrix. This observation allows truncation25 of the sum in eq
2.17 at some finitenmax, and convergence is usually exponential
with this parameter. The additional advantage gained by this
representation of the reference propagator is the large-scale
smoothing achieved by the omission of rapidly oscillatory high-
energy components. Furthermore, the truncated reference
propagator is spatially confined to the regions characterized by
significant wave function amplitude.22 Both of these features
are extremely desirable for the numerical evaluation of the
reduced density matrix. The effective propagator for a Morse
oscillator is illustrated in Figure 3 for two values ofnmax.
Equation 2.10, with the influence functional given by eq 2.14

and the reference propagator constructed numerically according
to eq 2.17, is thequasi-adiabatic propagator path integral

representation of the reduced density matrix for a quantum
particle in a finite-temperature phonon bath.25,28 This expression
treats the dynamics along the adiabatic path exactly, nonadia-
batic corrections entering via the influence functional. If such
nonadiabatic corrections are small, eq 2.10 can converge with
sizable time steps. In addition, the numerical construction of
smooth and spatially localized reference propagators makes
phase cancellation less severe.
Under certain favorable conditions (short time and strongly

dissipative system-bath interactions) the presence of the
influence functional, eq 2.14, damps sufficiently the slow
oscillations of the effective reference propagators such that
evaluation of the path integral by Monte Carlo methods is
possible. In these cases the short time propagators in eq 2.8
are stored on a grid of points which defines the sampling domain
for a multidimensional random walk.25 In order to facilitate
convergence in the presence of phase oscillations, the absolute
value of the integrand is used as the sampling function, and the
normalization integral of the latter is computed separately via
umbrella sampling and related techniques.29 This procedure
converges well when the oscillations are relatively mild and
the dimension of the integral is not very high.
In most other circumstances the oscillations in the integrand

of the path integral expression are severe, and stochastic
sampling methods fail to yield converged results with realistic
amounts of numerical effort. The alternative use of multidi-
mensional quadrature demands a judicious choice of grid points
and can be successful only if the volume of integration is not
very large, i.e., for small values ofN. The more appealing
iterative evaluation of the dynamics does not appear feasible
due to the nonlocal interactions in the influence functional, i.e.,
the coupling of all integration variables in eq 2.8. As will be
shown in the next section, the most promising scheme combines
the use of optimal quadrature and a decomposition of the path
integral which leads to an iterative algorithm. The remainder
of this section describes a highly efficient grid representation.
To this end, we seek quadratures that require the smallest

possible number of points per integration variable. Routine

J(ω) )
π

2
∑
j

cj
2

mjωj

δ(ω - ωj) (2.15)

ηkk′ ) 2
π∫-∞

∞
dω

J(ω)

ω2

exp(1/2pωâ)

sinh(1/2pωâ)
×

sin2(ω∆t/2) exp(-i(k- k′)ω∆t) (2.16)

〈sk′′|e-iH0∆t/p|sk′〉 ) ∑
n)0

nmax

Φn(sk′′) Φn(sk′) e
-iEn∆t/p (2.17)

Figure 3. Short time propagators plotted vs one of the endpoints for
a system described by a Morse potential. The other endpoint is fixed
at s) 0, which corresponds to the potential minimum. The time step
is equal to a tenth of the vibrational period at the potential minimum.
Red line: effective propagator constructed in terms of the lowest six
energy eigenstates. Blue line: effective propagator constructed in terms
of the lowest 12 energy eigenstates. The fine black line shows the
primitive propagator obtained by partitioning the Hamiltonian into
kinetic and potential energy terms.
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discretization of coordinate space into uniform grids requires a
minimum of 30-100 points per dimension and thus is prohibi-
tive for all but the most trivial applications. Much more
powerful tools arise from the use of Gaussian quadratures.
However, the relevant transformation functions generally cannot
be expressed in closed form when anharmonic potentials are
involved.
Superior representations would be feasible if one could

express the path integral in a noncoordinate basis. By construc-
tion, the reference propagators are diagonal in the basis of
eigenstatesΦn; as such, in the absence of system-bath coupling
this basis would require no summations, except for those
associated with the trace operation. Unfortunately, the eigen-
state representation is not suitable for evaluation of the system-
bath coupling part of the time-evolution operator, which is
diagonal in the position basis.
An optimal representation arises from combining the attractive

features of position space with those of the eigenstate basis,
i.e, convergence with the same small number of terms as the
eigenstate basis while diagonalizing the potential coupling. Such
basis sets, known as discrete variable representations (DVRs),
were introduced many years ago as convenient tools for
evaluating potential matrix elements.30,31 In the past decade,
Light and co-workers extended the DVR idea to develop
powerful methods for treating vibrational eigenvalue
problems.32-34 Uniform-grid discrete variable representations
of the kinetic energy matrix and of the free particle propagator
have been utilized recently in reactive scattering calculations.35

To apply the DVR idea in the path integral context, the system
position operator is diagonalized in the basis of theM most
relevant eigenstates of the reference Hamiltonian to construct
the system-specific DVR states

where the transformation coefficients are specified by the
requirement

The statesun constitute the discrete analogue of the ordinary
coordinate states, and the eigenvaluesσn, n) 1, ...,M form the
DVR grid. Representative illustrations of such states defined
in terms of the eigenstates of a symmetric double-well potential
are given in Figure 4. As the number of states employed in
the DVR transformation increases, the DVR functions become
more narrow and the corresponding grid denser, reflecting the
closer resemblance of these functions to continuous position
states. The DVR transformation is, in essence, a special system-
tailored Gaussian quadrature. For example, Light has shown
very clearly how the DVR corresponding to the angular part of
an isotropic Hamiltonian is equivalent to the Gauss-Legendre
quadrature.32 Finally, note that the DVR basis is obtained via
a unitary transformation of the eigenstate basis, and thus the
DVR grid is sparse whenever the dynamics can be adequately
represented by a small number of reference system eigenstates.
To make use of the DVR quadrature, one re-expresses the

path integral using the resolution of identity in terms of the
discretized position states,

This equation is numerically exact to the extent that the chosen
states provide an adequate representation of the reduced density
matrix for the coupled system-bath Hamiltonian (see also the
discussion below) and allows the spectral expansion of the
coupling present in the displaced bath time-evolution operator:

The latter leads to the following DVR-discretized quasi-adiabatic
propagator path integral representation of the reduced density
matrix for the quantum particle:36

Because of the structure of eq 2.21, the influence functional
remains unchanged in the DVR representation but is now
evaluated at the new quadrature points. The DVR representation
of the one-dimensional propagator for the adiabatic system
Hamiltonian is constructed numerically with the aid of the basis
transformation relations, eqs 2.18 and 2.19.
In the absence of system-bath coupling, the numberM of

terms required in eq 2.21 would be exactly equal to the
minimum numbernmaxnecessary for representing the dynamics
of the quantum particle, i.e., the initial density matrix of the

Figure 4. DVR states constructed from theM lowest lying states of
a symmetric double-well potential: (a)M ) 2; (b)M ) 12.

e-i(H-H0)∆t/p ) ∑
kn)1

M

|ukn〉e
-i(H-H0(σkn))∆t/p〈ukn| (2.21)

F̃(s′′,s′;N∆t) )

∑
k0+)1

M

∑
k1+)1

M

... ∑
kN-1

+ )1

M

∑
k0-)1

M

∑
k1-)1

M

... ∑
kN-1

- )1

M

〈s′′|e-iH0∆t/p|ukN-1

+ 〉 ×

〈ukN-1

+ |e-iH0∆t/p|ukN-2

+ 〉...〈uk1
+|e-iH0∆t/p|uk0

+〉〈uk0
+|Fs(0)|uk0

-〉 ×
〈uk0

-|eiH0∆t/p|uk1
-〉〈uk1

-|eiH0∆t/p|uk2
-〉...〈ukN-1

- |e-iH0∆t/p|s′〉 ×
F(σk0

+,σk1

+,...,σkN

+ ,σk0

-,σk1

-,...,σkN

- ) (2.22)

un ) ∑
n′)1

M

Lnn′Φn′ (2.18)

〈un|s|un′〉 ) σnδnn′ (2.19)

1)∫-∞

∞
dsk|sk〉〈sk| ≈ ∑

kn)1

M

|ukn〉〈ukn| (2.20)
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system and the reference propagator. In the presence of
system-bath interaction the DVR basis must be adequate for
the expansion of the influence functional as well. Generally,
eq 2.22 converges with values ofM that are only slightly larger
thannmax. The primitive, highly oscillatory propagator requires
typically about 102-103 grid points per integration variable.
Filtering out the high-energy components through the eigenstate
expansion leads to smooth propagators that can be adequately
represented with 30-100 coordinate points. Finally, in common
situations typical of proton-transfer reactions the DVR quadra-
ture makes the required number of integrand evaluations as small
as 2-10 for each path integral variable. It is thus apparent that
the introduction of system-specific DVR grids to the real-time
path integral leads to a contraction of the multidimensional grid
by a factor on the order of 1002N. Finally, note that in situations
involving unbound potentials or, more generally, whenever static
basis functions cannot offer compact representations, efficient
path integral quadratures can still be defined in terms oftime-
dependentdiscrete variable representations.37 In such cases,
the DVR basis functions will generally be different for different
time points on a discrete path.

Apart from the significant practical advantages discussed
above, the DVR representation of the path integral for the
reduced density matrix provides a unified approach to the
dynamics of quantum systems defined via continuous or discrete
(lattice) Hamiltonians. A typical example is offered by sym-
metric proton-transfer reactions modeled in terms of one-
dimensional double-well potentials. At very high temperatures
the motion is nearly classical and the system must be modeled
in terms of an extended coordinate. At the same time, high
temperature allows population of highly excited system states,
leading to a dense DVR grid. As the temperature is lowered,
the number of relevant states decreases until one approaches a
regime where the dynamics are dominated by the characteristics
of the lowest tunneling doublet. Thus, the celebrated two-level
system Hamiltonian emerges in the low-temperature limit simply
from the use of only two system eigenstates in the DVR
transformation of eq 2.18; no parameter rescaling is necessary,
as the DVR states and eigenvalues carry all the necessary
information.

To summarize the developments of this section, the DVR-
discretized quasi-adiabatic propagator expression of the reduced
density matrix for a quantum system interacting with a dissipa-
tive phonon environment offers the highly desirable features
of convergence with relatively large time steps and sparse grid
representation. These properties arise because the obtained path
integral representation incorporates the exact dynamics along
the adiabatic path as its zeroth-order limit and is spatially
discretized via optimal system-specific quadratures. Still, with
the exception of two- or three-level systems at relatively short
times, evaluation of the resultingM2N-dimensional integral is
numerically prohibitive. This problem is dealt with in the next
section.

III. Propagator Functional and Iterative Dynamics

In the absence of system-bath coupling the influence
functional is equal to unity. In that limit the path integral
representation of the reduced density matrix is equivalent to
the time-dependent Schro¨dinger equation for the reference
Hamiltonian. Indeed, the initial system density matrix can be
expanded in the basis of its eigenstates as

and the integrations in the resulting eq 2.8 for each term of the
above expansion can be performed sequentially:

Finally, afterN propagation steps,

As with any quantity satisfying a first-order differential equation
with specified initial conditions, the dynamics of the density
matrix is Markovian in the full Hilbert space of the Hamiltonian.
The situation described by eq 2.8 is significantly more

complicated. Although the evolution of the full-dimensional
system-bath density matrixF(t) ) exp(-iHt/p)F(0) exp(iHt/
p) is still given by the first-order differential Schro¨dinger
equation, the process of integrating out the bath to obtain the
lower-dimensional reduced density matrix destroys the Mark-
ovian character of the dynamics. Within the path integral picture
this occurs as the Feynman paths in the full path integral
representation of the system-bath time-evolution operator,

are projected on the system-time plane through the process of
performing the integrals over the bath variablesxk (see Figure
5). The result is an influence functional of the system paths
with nonlocal interactions, i.e., couplings between the variables
sk

( and sk′
(, which prevent decomposition of the reduced-

dimension path integral into sequential integrations of the type
shown in eq 3.2.
The nonlocal terms in the path integral expression of the

reduced density matrix arise from the correlation function of
the medium,26

which in the case of a harmonic bath takes the form

The coefficientsηkk′ in eq 2.9 are closely related to the trapezoid-
rule discretization of the functionR(t - t′).28

Fs(0)) ∑
n)1

nmax

an|æn〉〈æn| (3.1)

〈s|æn((k+1)∆t)〉 )∫-∞

∞
dsk〈s|e-iH0∆t/p|sk〉〈sk|æn(k∆t)〉,

k) 0, ...,N- 1 (3.2a)

〈s′′|Fs(N∆t)|s′〉 ) ∑
n)1

nmax

an〈s′′|æn(N∆t)〉〈æn(N∆t)|s′〉 (3.2b)

F(s′′x′′,s′x′;t) )∫ds0+∫ds1+...
∫dsN-1

+ ∫ds0-∫ds1-...∫dsN-1
- ∫dx0+∫dx1+...∫dxN-1

+ ×
∫dx0-∫dx1-...∫dxN-1

- 〈s′′x′′|e-iH∆t/p|sN-1
+ xN-1

+ 〉 ×
〈sN-1

+ xN-1
+ |e-iH∆t/p|sN-2

+ xN-2
+ 〉...〈s1

+ x+|e-iH∆t/p|s0+ x0
+〉 ×

〈s0
+ x0

+|F(0)|s0- x0
-〉〈s0

- x0
-|eiH∆t/p|s1- x1

-〉 ×
〈s1

- x1
-|eiH∆t/p|s2- x2

-〉...〈sN-1
- xN-1

- |eiH∆t/p|s′x′〉 (3.3)

R(t - t′) ) p-1∑
j

cj
2〈xj(t′) xj(t)〉 (3.4)

R(t) ) ∑
j

cj
2

2mjωj

[coth(1/2pωjâ) cos(ωjt) - i sin(ωjt)] (3.5)

) 1
π∫0∞dωJ(ω)[coth(1/2pωâ) cos(ωt) - i sin(ωt)]
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It is instructive to point out a formal analogy between the
situation at hand and theclassicaldynamics of the system-
bath Hamiltonian. Although the classical dynamical variables
obey Newton’s equations in the phase space ofall (system and
bath) degrees of freedom, elimination of the harmonic bath
degrees of freedom again produces38 a non-Markovian equation
of motion for the coordinate of the system of interest known as
the generalized Langevin equation (GLE), which for a system
described by the HamiltonianHs ) ps2/2m0 + V0(s) takes the
form

Hereø(t - t′) is the (generally time-dependent) friction kernel
given by the expression

and ú(t) is a random force satisfying the second fluctuation-
dissipation theorem,39

The evolution of the system coordinate is seen from eq 3.6 to
depend on the history of the trajectory through the memory
kernelø(t - t′), in close similarity to the quantum path integral
situation.
Still, close examination of the influence functional reveals a

fundamental difference between classical memory and quantum
nonlocality. The nonlocal terms in the path integral expression
of the reduced density matrix arise from the correlation function
of the medium,26

which in the case of a harmonic bath takes the form

The coefficientsηkk′ in eq 2.9 are closely related to the trapezoid-
rule discretization of the functionR(t - t′).28 It can be shown40

that the memory arising from a classical bath (i.e., by using the
p f 0 limit of the response function) can be eliminated, leading
to Markovian evolution. By contrast, the purely imaginary part
of the quantum response function prohibits such simplification.
The classical memory kernel arising from dissipative phonon

baths usually decays rapidly. This is the result of phase
cancellation among a practically infinite number of different
frequency modes. As a consequence, the evolution of the
system coordinate according to the GLE equation of motion,
although not Markovian, is nevertheless governed largely by
the frictional forces in the recent history of the trajectory, while
the details of the motion in the distant past are of no importance.
Assuming that the friction kernelø(t) drops below an acceptable
threshold within a time lengthτ, eq 3.6 can be rewritten as

which requires storing the trajectory over a (short) intervalτ
preceding the current time.
In analogy with the classical friction kernel, the correlation

function for a dissipative bath also decays with time, implying
that the nonlocality of the influence functional has in practice
a finite span which is equivalent to∆kmax path integral time
steps. The last observation allows decomposition of the path
integral into a series of lower-dimensional integrals.27,41-44 This
is best seen from the diagrammatic representation of the path
integral expression, eq 2.8, shown in Figure 6. Here each vertex
represents a time point on the forward or backward time axis,
while the loops indicate the factors (pairwise interactions)
between these points in the path integral. The nearest neighbor
interactions correspond to the reference system propagators as
well as the influence functional terms havingk′ ) k - 1. All
other loops indicate other influence functional terms. In this
illustration it is assumed that the bath correlation function decays
to zero within∆kmax ) 3 time steps, leading to omission of
loops connecting points separated by a larger time interval. The
reduced density matrix at a later timet ) n∆kmax∆t is obtained
by summing over the quadrature points corresponding to all
previous points connected by the appropriate loops (multiplied
by the proper initial condition). This operation can also be
performed via the procedure outlined below.
First, each forward or backward path in eq 2.8 is decomposed

into shorter segments that span the time intervals 0e t e (∆kmax
- 1)∆t, ∆kmax∆t e t e (2∆kmax - 1)∆t, etc. The time points
on which these path segments are defined are designated in
Figure 6 as vertexes of different colors. Next, one constructs
an array of forward and backward path segment pairs, i.e.,
sequences of 2∆kmax coordinate values on the DVR grid. The
assumption that the length of influence functional interactions
does not exceed∆kmax time steps implies that each path segment
is coupled only to its nearest neighbors (see Figure 6).
Therefore, a propagator matrixT can be constructed whose
matrix elementTji consists of all interactions that couple the
ith path segment to itsjth neighbor in the direction of increasing

Figure 5. Schematic representation of a Feynman path in full-
dimension system-bath space and its projection onto the reduced-
dimension space characterized by the system coordinate alone. The
gray dashed lines indicate some of the nonlocal influence functional
interactions arising from this projection.

R(t) ) ∑
j

cj
2

2mjωj

[coth(1/2pωjâ) cos(ωjt) - i sin(ωjt)] (3.10)

) 1
π∫0∞J(ω)[coth(1/2pωâ) cos(ωt) - i sin(ωt)] dω

m0s̈(t) + V′0(s(t)) +∫t-τ

t
ø(t - t′) s̆(t′) dt′ ) ú(t) (3.11)

m0s̈(t) + V′0(s(t)) +∫0tø(t - t′) s̆(t′) dt′ ) ú(t) (3.6)

ø(t) ) 2
π∫-∞

∞ J(ω)
ω

cosωt dω (3.7)

〈ú(t) ú(t′)〉 ) kBT ø(t - t′) (3.8)

R(t - t′) ) p-1∑
j

cj
2〈xj(t′) xj(t)〉 (3.9)
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time. To take advantage of this structure, we introduce a
functional of path segments43 which corresponds to a multi-
time-reduced density matrix. If there areL path segments, this
functional becomes a vectorR of elements

defined on the time intervalsm∆kmax∆t e t < (m+1)∆kmax∆t,
wherem is an integer. This vector can be propagated forward
in time via multiplication with theL×L propagator matrixT:

Notice that the matrixT is a functional of the earlier and later
path segments introduced above. Finally, multiplication by an
M2×L-dimensional endpoint propagatorS yields44 the desired
reduced density matrix at the discrete timesm∆kmax∆t:

The procedure is summarized in the diagram of Figure 7.
TheM DVR states employed in the calculation give rise to

a total of M2∆kmax forward and backward path segments.
Although dramatically smaller than the total numberM2N of
paths that enter the complete path integral forN . ∆kmax, this
size of the arrayR is in most cases prohibitive. The crucial
observation45,44 that leads to a tractable scheme exploits the
presence of a real part in the exponent of the influence
functional. Due to this damping factor, the vast majority of
paths enter the path integral with negligible weight and therefore
could be neglected. Because of the product structure of the
influence functional, a path that spans the long timeN∆t can
have appreciable weight only ifall of its constituent path
segments have weights that are larger than some thresholdθ.
In general, for∆kmax . 1 the number of path segments with
appreciable weight constitutes a very small fraction of the total
numberM2∆kmax of conceivable forward and backward path
segments that span the memory length. Therefore, the iterative
propagation is preceded by a Monte Carlo random walk in the
space of paths with length equal to the memory time which
identifies those with weight larger than a preselected threshold;
details have been given in ref 44. TheL path segments selected
from this procedure form the elements of the arrayR introduced
above. In many situations typical of electron or proton transfer
in the condensed phase the storage requirements of the scheme
described above are modest.
During each step in the multiplication process, path segments

are pieced together to form longer paths. Aftern iterations of
eq 3.11 the total number of forward/backward paths effectively

included is equal toLn-1. For example, a selection of just 104

path segments leads after 100 iterations to a result equivalent
to that obtainable through explicit summation over 10400system
paths. Clearly, inclusion of such an astronomical number of
terms through global (noniterative) summation is not a viable
alternative.

IV. Examples

In this section we illustrate the implementation of the path
integral methodology presented in this article with two examples.
The first involves barrier crossing along a reaction coordinate
characterizing a process in a solid material, such as an
isomerization reaction or a single site-to-site hop in the diffusion
of a hydrogen impurity in a crystalline host. In this case the
relevant parameters can be obtained from expansion of the
Born-Oppenheimer Hamiltonian in terms of the small-
amplitude lattice vibrations about the reaction path. The second
case deals with electron transfer in a biological environment.
Here the process is dominated by nonadiabatic transitions
between the potential surfaces characterizing the charge-transfer
states. As the liquid and protein modes undergo large-amplitude
motion, quadratic expansions about a reference geometry are
not meaningful and the spectral density is inferred from the
classical correlation function of the energy gap which is obtained
via molecular dynamics simulations.
(a) Tunneling in Isomerization Reactions. The first il-

lustration of the path integral scheme described in sections II
and III is its application to a generic model of barrier crossing,
such as the transfer of a hydrogen atom between two equivalent
sites in a condensed-phase medium. The system Hamiltonian
is chosen as a symmetric double-well potential with a barrier
of 6 kcal/mol. This potential, along with a few of the lowest
eigenenergies, is shown in Figure 8. The process of interest is

Figure 6. Diagrammatic representation of the path integral interactions (curved lines) in a case where the memory length is equal to three time
steps. The circles indicate time points separated by∆t. Red and yellow circles correspond to points defining the matrixR of path segments at times
0 andk∆t (k ) 3), respectively. The blue lines indicate the interactions included in the propagator matrix.

Figure 7. Diagrammatic representation of the procedures involved in the reduced density matrix propagation.

Figure 8. Double-well potential employed in the rate calculations
summarized in section IV. The energy spectrum is also shown. (The
splitting of the two lowest doublets cannot be discerned.)

Ri(m∆kmax∆t) ≡ R((s1
(,...,s∆kmax

( )i; m∆kmax∆t), i ) 1, ...,L
(3.12)

R((m+1)∆kmax∆t) ) T‚R(m∆kmax∆t) (3.13)

F̃(m∆kmax∆t) ) S‚R((m-1)∆kmax∆t) (3.14)
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the transfer between the two potential minima through a
combination of activated dynamics and tunneling.
Under the most common conditions, the reactant population

in the process described above exhibits exponential decay whose
rate is determined by the interplay among several relevant time
scales: first, one has the “gas-phase” time constants, i.e., the
period of vibration in the potential wells and the time associated
with tunneling in the lowest doublet. Also of importance are
the relaxation time of the medium as well as the overall time
constant of the reaction. At the temperatures of interest the
time required for completion of the reaction is much larger than
all vibrational periods due to the low Boltzmann-weighted
probability of overcoming the barrier, and the process is
governed by the statistics of rare events (see, for example, ref
46).
Rather than following the dynamics of the reactant population

over the very long time required to observe formation of
products, a more efficient calculation of the reaction rate is via
the reactive flux method.47-51 This method obtains the rate by
calculating the time-integrated reactive flux through a fictitious
dividing surface separating reactants from products. In the
quantum reactive flux formalism of Miller et al. the rate is
proportional to the time integral of the flux-flux correlation
function52

Here

is the symmetrized flux operator which measures the reactive
flux through a dividing surface located ats) s0, tc ) t - ipâ/2
is a complex time that arises from combining the time-evolution
operator with the symmetrically split Boltzmann operator, and
the correlation function is integrated up to the “plateau” time,
which is long compared to vibrational periods in the stable well
but generally much shorter than the time required for completion
of the reaction. As a consequence, calculation of the reaction
rate according to the reactive flux formalism requires only short
time dynamics.
If the interaction forces between the quantum particle and

the crystal atoms are available, the phonon frequencies and
coupling functions can be obtained from a quadratic expansion
of the potential about the reaction path. While simulation of a
specific reaction requires a numerical calculation of the indi-
vidual coupling functions, a simple generic model can capture
the important qualitative aspects of the dynamics. A useful
model emerges from the Debye spectrum, which predicts a
density of states that grows asωd-1 at small frequencies, where
d is the dimension of the solid, while terminating at some
characteristic Debye frequency. Use of the deformation po-
tential approximation (see, for example, ref 53) results in a
spectral density of the typeωd. Introducing a smooth expo-
nential cutoff for the high-frequency part of the spectrum leads
to the following popular model for the spectral density:54

Hereγ is a friction parameter characterizing the overall strength
of coupling to the phonons. Below we focus on the so-called
Ohmic case obtained from eq 4.3 withd ) 1, which displays
the most diverse behaviors.

Obtaining the quasi-adiabatic propagator path integral rep-
resentation of the flux correlation function is straightforward
and leads to a 2N-2-dimensional integral.29 Since knowledge
of the flux correlation function for relatively short times
determines the reaction rate, it is possible to obtain the latter
via a combination of Monte Carlo sampling and multidimen-
sional DVR quadrature, without resorting to the iterative
procedure described in section III.

In the temperature range considered in Figure 10 below (âEb
∼ 10-30) convergence of the flux correlation function is
achieved withN e 8. At the lowest of these temperatures and
with sufficiently strong system-bath coupling the damping is
significant and the Monte Carlo procedure outlined in section
II converges fairly rapidly. By contrast, at higher temperatures
and/or weak coupling the oscillations in the integrand are more
severe, necessitating the use of multidimensional DVR quadra-
ture withM e 16. Typical behaviors of the integrated flux
correlation function are shown in Figure 9. The upward or
downward step structure is associated with constructive or
destructive phase interference arising from recurrences of the
quantum flux on the time scale of vibration in the reactant well.55

These recurrences, whose origin is strictly quantum mechani-

Cf(t) ) Tr(FheiHtc
//pFhe-iHtc/p) (4.1)

Fh ) 1
2m

(psδ(s- s0) + δ(s- s0)ps) (4.2)

J(ω) ) γω( ω
ωc

)d-1
e-ω/ωc (4.3)

b

a

c

Figure 9. Path integral results for the time integral of the flux-flux
correlation function for the reaction described by the double-well
potential discussed in the text: (a)âEb ) 10 (activated regime), strong
friction; (b) âEb ) 10 (activated regime), weak friction; (c)âEb ) 30
(deep tunneling regime, weak friction).
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cal,56 lead to large deviations of the quantum rate compared to
that predicted by imaginary-time transition-state-like models.57

Figure 10 shows an Arrhenius plot of the calculated rate
constant over a wide range of temperatures at three values of
the friction strength. All three curves show the expected
crossover from the activated regime to that dominated by
quantum tunneling. This transition is seen to be sharper for
weak coupling to the phonon bath, while nonnegligible depen-
dence on temperature in the deep tunneling regime is observed
with stronger coupling, in agreement with semiclassical predic-
tions.58 In addition, the crossover temperature shifts to lower
values as the coupling strength is increased.
Finally, the dependence of the rate on system-bath coupling

strength is shown in Figure 11 for two temperatures. Plotted
here is the quantum transmission coefficient, i.e., the rate
constant divided by the estimate of classical transition-state
theory. The rate constant displays the well-known Kramers
turnover59 in the activated regime, and the simulation results
are in excellent agreement with earlier theoretical work.60,61As
the temperature is lowered, the characteristic friction at turnover

shifts to smaller values. In the deep tunneling regime ap-
proximate treatments are only qualitatively correct. At suf-
ficiently low temperature the rate dependence on friction is for
all practical purposes monotonic.
At very low temperatures the dynamics is dominated by the

characteristics of the tunneling doublet, and the problem reduces
to the spin-boson model (dissipative two-level system), which
has been the subject of numerous studies. In this case the
system Hamiltonian can be expressed in the form

whereΩ is equal to half of the tunneling frequency. Depending
on the values of the temperature and the friction strength, the
spin-boson Hamiltonian exhibits a variety of behaviors, which
include underdamped or incoherent relaxation and even com-
plete localization.54 These behaviors are commonly summarized
in terms of the dimensionless Kondo parameterê ) 2γ/πp.
In order to examine the diverse dynamics of the dissipative

two-level system, the reduced density matrix must be integrated
over sufficiently long time intervals. Numerical results obtained
with the iterative path integral procedure of section III are
presented below for an Ohmic bath characterized byωc ) 10Ω
for pΩ/kBT ranging between 0.1 and 5 and with weak to
moderate friction strength. In this range of parameters the path
integral converges with time steps∆t ∼ 0.03-0.08Ω-1. In
order to obtain an estimate of the characteristic memory time,
one must examine the bath response function. Figure 12 shows
this function for the case of the spectral density characterized
by eq 4.3. It is seen that the real and imaginary parts of the
response function decay to values close to zero within 4-8 time
steps. With this memory length the numberL ) 22∆kmax of path
segments is modest and no path selection is necessary.
(However, further decomposition of the propagator matrix is
now required.41)
Typical behaviors of the average two-level system position

are shown in Figure 13. In accord with the predictions of the
noninteracting blip approximation,54 this quantity displays
exponential decay at high temperature and/or sufficiently strong
friction parameter. At low temperatures and small values of
the Kondo parameter the system undergoes underdamped
oscillations and eventually achieves its equilibrium value.
(b) Biological Charge Transfer. Electron transfer is intrin-

sically a classically forbidden phenomenon, requiring structural
transformations that are not compatible with the potential
governing a single Born-Oppenheimer state. To model an
electron-transfer process, one must be able to describe the
quantum dynamics of the nuclear motion associated with curve-
crossing events as well as quantum tunneling. Here we employ
the common picture where the nuclear dynamics of the donor

Figure 10. Logarithm of the rate constant for the model reaction
discussed in the text as a function of inverse temperature. Blue line:
very weak friction,γ/ωb ) 0.05. Green line: weak friction,γ/ωb )
0.1. Red line: moderate friction,γ/ωb ) 0.5.

a

b

Figure 11. Path integral results for the quantum transmission coef-
ficient of the model double-well potential discussed in the text as a
function of system-bath coupling strength. (a) Temperature above
crossover,âEb ) 15. (b) Temperature around crossover,âEb ) 30.
Values ofγ/ωb greater than approximately 0.6 correspond to activated
dynamics, while tunneling effects become dominant at smaller values
of the friction.

Figure 12. Real (solid line) and imaginary parts (dashed line) of the
bath response function for the spectral density given by eq 4.3 withd
) 1.

Hs ) -pΩ(0 1
1 0) (4.4)
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and acceptor states is described by two multidimensional
diabatic potential wells. If the medium is characterized by large-
amplitude floppy motion, as in the case of electron transfer in
solution or in a biological host, the donor and acceptor potential
surfaces are expected to be very anharmonic functions of the
atomic displacements. However, the process of electron transfer
is governed by thecollectiVemotion of a large number of solvent
coordinates. As such, use of the central limit theorem implies
a Gaussian response, such that the dynamics induced by the
actual multidimensional anharmonic medium is equivalent to
that of an effective harmonic bath of an appropriate spectral
density.2,56,62-65 With this simplification the process is modeled
by eq 1.1 whereHs is now a Hamiltonian matrix whose diagonal
elements are the free energies of the relevant charge-transfer
states. A sketch of the parabolic free energy surfaces is given
in Figure 14.
The collective characteristics of the solvent or biological

medium can be mapped onto those specifying the system-bath
model by invoking the quantum classical correspondence for
harmonic oscillators. Specifically, as the nuclear degrees of
freedom (modeled as classical variables) fluctuate about their
equilibrium configuration, the energy gap between the donor
and acceptor states fluctuates about its average value as the
function

wherexj
cl(t) denote the classical coordinates andl is a constant

determined by the donor-acceptor distance in the Hamiltonian.
The correlation functionCDA(t) of the donor-acceptor energy
gap fluctuations about its equilibrium average is then

Noting thatCDA(t) is simply related to the classical limit of the
response function,

the gap fluctuation correlation function can be expressed in terms
of the spectral density according to the relation

which can be inverted to yield the spectral density as the Fourier
integral

Thus, the collective characteristics of the medium relevant to
the electron-transfer process can be found from the Fourier
transform of the classical gap fluctuation correlation function,
which is obtainable via classical molecular dynamics simula-
tions.

As an illustrative example, we discuss below the path integral
simulation of the primary charge separation in bacterial pho-
tosynthetic reaction centers. The process starts with photoex-
citation of a special chlorophyll pair, denoted P, which initiates
a series of electron-transfer reactions whose earliest detectable
product is a negatively charged bacteriopheophytin HL located
about 17 Å away on the L side of the polypeptide.66 (See Figure
15.) This process has a time constant of 3 ps and is believed
to be mediated by an accessory bacteriochlorophyll BL located
between the primary donor and acceptor units. In agreement
with some earlier theoretical predictions,67-69 there is now strong
evidence70-73 that the reduced accessory chlorophyll state
participates in the electron transfer as part of a two-step process
characterized by a fast second kinetic step which does not allow
detectable accumulation of electron charge on this monomer.74-80

The corresponding arrangement of the diabatic free energy
surfaces is sketched in Figure 16.

The process has been modeled via a three-state Hamiltonian
which is coupled to a dissipative medium of protein and water
modes via a spectral density that is obtained from classical
molecular dynamics simulations.81 The spectral density function
is reproduced in Figure 17 along with the corresponding bath
response function. The path integral time step varies between
3 and 13 fs, such that the medium-induced memory spans up
to 35 time steps. The total simulation time ranges between 2000
and 5000 time steps. A Monte Carlo path selection is carried
out, reducing the number of statistically significant path
segments from the total numberL ) 370 to about 104-105.

Figure 13. Average position of a two-level system coupled to a bath
with the spectral density described in the text as a function of time for
various combinations of temperature and friction strength. Dashed
line: pΩâ ) 0.1, ê ) 0.2. Solid line: pΩâ ) 5, ê ) 0.1.

Figure 14. Sketch of the multidimensional free energy surfaces of
the donor and acceptor in an electron-transfer process.

const+ l∑
j

cjxj
cl(t) (4.5)

CDA(t) ) l2∑
j

cj
2〈xj

cl(0) xj
cl(t)〉â (4.6)

CDA(t) ) l2 limpf0pR(t) (4.7)

CDA(t) ) 2l2

πâ∫0∞J(ω)ω
cosωt dω (4.8)

J(ω) ) âω
l2
∫0∞CDA(t) cosωt dt (4.9)
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The evolution of the electronic state populations is shown in
Figure 18. The simulation results can be fitted well by a two-
step kinetic equation:

Additional path integral simulations have confirmed that the
two-step model with the determined parameters72 reproduces

Figure 15. Three-dimensional view of the bacterial photosynthetic
reaction center ofRps. Viridis. The bacteriochlorophyll and bacte-
riopheophytin groups are shown in red.

Figure 16. Schematic representation of the diabatic surfaces corre-
sponding to the bacteriochlorophyll special pair, the reduced bacterio-
chlorophyll monomer, and the reduced bacteriopheophytin in the
photosynthetic reaction center ofRps.Viridis.

Figure 17. Protein and solvent features affecting the dynamics of
primary charge separation in the photosynthetic reaction center ofRps.
Viridis. (a) Spectral density obtained via molecular dynamics simulations
in ref 81. (b) Bath response functionR(t) at 300 K. The solid and dotted
lines correspond to the real and imaginary parts of this function.

Figure 18. Evolution of the electronic state populations for the wild-
type reaction center obtained via iterative propagation of the reduced
density matrix. The free energy of the reduced accessory bacteriochlo-
rophyll is 400 cm-1 lower than that of the donor. The donor-bridge
and bridge-acceptor couplings are set equal to 22 and 135 cm-1,
respectively. Hollow circles: population of the electron donor. Filled
squares: population of the bridge. Hollow triangles: population of the
electron acceptor. (Data from ref 73.)
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well the temperature dependence observed on the wild-type
reaction center as well as the modified kinetics of certain studied
mutants.

V. Summary and Outlook

The path integral methodology described in this article offers
the attractive possibility of allowing fully quantum mechanical
simulations of dynamical processes in dissipative phonon-type
environments. No ad hoc assumptions about the evolution are
introduced, leading to reliable results in parameter regimes not
accessible by available analytic or numerical approximations.
Depending on the situation at hand, the parameters in the

Hamiltonian of eq 1.1 can be specified either in terms of the
individual phonon frequencies and coupling functions obtainable
through a Taylor expansion of the multidimensional potential
energy surface or from the collective characteristics of the bath
encoded in its correlation function; in turn, the latter can be
calculated by means of classical molecular dynamics methods,
thus providing the information necessary for mapping anhar-
monic media onto effective harmonic models under conditions
leading to Gaussian response.
Unlike earlier approaches to real-time path integration which

were based on Monte Carlo evaluation of the highly oscillatory
path integral expression discretized in terms of primitive
propagators, the present scheme takes advantage of the physics
of the process in multiple ways to achieve a viable algorithm:
First, a physically motivated reference is employed in the
discretization of the short time propagator, leading to a path
integral representation which incorporates the exact dynamics
along the adiabatic path as its zeroth-order limit. Second, the
finite-basis eigenstate expansion of the reference propagator
filters out the rapid phase oscillations of the latter, resulting in
a well-behaved integrand. Third, the use of system-specific
discrete variable representations of the path integral in the bulk
of parameter space provides the most economical quadrature,
leading to a dramatic contraction of the required multidimen-
sional grid. Lastly, exploiting the finite extent of nonlocal
interactions in the resulting influence functional associated with
dissipative baths encountered in the condensed phase allows
decomposition of the path integral into a series of low-
dimensional operations, leading to an iterative algorithm that
does not suffer from the alternating sign problem.
The DVR-discretized quasi-adiabatic propagator path integral

and the iterative procedure discussed in sections II and III lead
to numerically exact results once convergence with respect to
step size, number of quadrature terms, memory length, and path
segment acceptance threshold has been reached. The examples
presented in section IV provide a feel for the magnitude of these
parameters.
The availability of a numerically exact scheme for simulating

the dynamics of systems described by a reaction coordinate
interacting with a collection of harmonic bath degrees of
freedom opens up the way to exploring a host of chemically
interesting questions such as hydrogen atom or electron transfers
in solution or in biological environments, structural isomeriza-
tions, or light particle diffusion on solid surfaces or in the bulk,
to name but a few. Further, the methodology reviewed in this
article is easily generalizable to Hamiltonians including time-
dependent fields, allowing its application to systems interacting
with coherent laser radiation. Some of these questions have
been explored in recent articles.82-86

Yet, quantum molecular dynamics, the ability to follow the
dynamics of large molecules with the same rigor that character-
izes routine classical trajectory simulations, remains out of reach.

This goal has been a long-standing dream of many theoretical
chemists, as there are numerous chemically interesting situations
that are too complex to allow decomposition of the Hamiltonian
into a system coupled to a harmonic bath. At the moment it
appears that the most general many-body quantum dynamics
problem is not amenable to numerically exact solution due to
the exponential scaling of the quantum mechanical equations
of motion with system size. Nevertheless, it is likely that ideas
similar in spirit to those employed in this article can lead to
numerically tractable, yet sufficiently rigorous techniques for
treating processes in nearly classical anharmonic fluids or other
similar situations. Such goals will undoubtedly attract signifi-
cant attention in the future.
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